JORDAN $\epsilon$-HOMOMORPHISMS AND JORDAN $\epsilon$-DERIVATIONS
نویسندگان
چکیده
منابع مشابه
Jordan Homomorphisms and Derivations on Semisimple Banach Algebras
1. Introduction. One may construct a Jordan homomorphism from one (associative) ring into another ring by taking the sum of a homo-morphism and an antihomomorphism of the first ring into two ideals in the second ring with null intersection [6]. A number of authors have considered conditions on the rings that imply that every Jordan homomorphism, or isomorphism, is of this form [6], [3], [7], [1...
متن کاملOn Jordan left derivations and generalized Jordan left derivations of matrix rings
Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...
متن کاملApproximation of Jordan homomorphisms in Jordan Banach algebras RETRACTED PAPER
In this paper, we investigate the generalized Hyers-Ulam stability of Jordan homomorphisms in Jordan Banach algebras for the functional equation begin{align*} sum_{k=2}^n sum_{i_1=2}^ksum_{i_2=i_{1}+1}^{k+1}cdotssum_{i_n-k+1=i_{n-k}+1}^n fleft(sum_{i=1,i not=i_{1},cdots ,i_{n-k+1}}^n x_{i}-sum_{r=1}^{n-k+1} x_{i_{r}}right) + fleft(sum_{i=1}^{n}x_{i}right)-2^{n-1} f(x_{1}) =0, end{align*} where ...
متن کاملNearly Generalized Jordan Derivations
Let A be an algebra and let X be an A-bimodule. A C−linear mapping d : A → X is called a generalized Jordan derivation if there exists a Jordan derivation (in the usual sense) δ : A → X such that d(a) = ad(a) + δ(a)a for all a ∈ A. The main purpose of this paper to prove the Hyers-Ulam-Rassias stability and superstability of the generalized Jordan derivations.
متن کاملJordan homomorphisms and harmonic mappings
We show that each Jordan homomorphism R→ R′ of rings gives rise to a harmonic mapping of one connected component of the projective line over R into the projective line over R′. If there is more than one connected component then this mapping can be extended in various ways to a harmonic mapping which is defined on the entire projective line over R. Mathematics Subject Classification (2000): 51C0...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2005
ISSN: 1027-5487
DOI: 10.11650/twjm/1500407885